注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

lican8341的博客

霜剑如梦倚残翼,泊影难觅几何时!

 
 
 

日志

 
 

国内最优套期保值比率模型主要成果综述  

2015-08-26 21:17:57|  分类: 金融帝国——马克 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
【摘要】本文通过文献收集与汇总分析,在前人的基础上重新整理了国内外在套期保值比率研究领域所获得重要成果。总体上,本文先大致以时间顺序列举了国际上该领域十几个里程碑式的历史研究成果,逐步阐述了用来预测套期保值比率的OLS模型、向量自回归模型(VAR)、误差修正模型、ARCH模型、GARCH模型、误差修正模型(ECM)、门限协整模型、ARFIMA模型等的提出及演变过程。最后本文引入了中国在这一领域探索的进展。 
  【关键词】套期保值比率;模型分析;国内外成果 
   
  套期保值比率是指为规避固定收益债券现货市场风险,套期保值者在建立交易头寸时所确定的期货合约的总价值与所保值的现货合同总价值之间的比率。确定合适的套期保值比率是减少交叉套期保值风险,达到最佳套期保值效果的关键。最优套期保值比率的确定是套期保值问题中的其核心问题,目前已经有大量的文献讨论。 
  一、国外主要成就 
  1.传统的OLS模型 
  由于风险度量方法和效用函数选择不尽一致,学者们提出了许多模型并进行了大量的实证研究。Johnson(1960)[1]在收益方差最小化的条件下,最早提出了商品期货最优套期保值比率的概念,并给出了最优套期保值比率的计算公式,即MV套期保值比率(Minimizing variance hedge ratios),可通过OLS估计。在此基础上,Ederington(1979)[2]给出了期货市场套期保值有效程度的指标,该指标反映了进行套期保值交易相对于不进行套期保值交易的风险降低程度。传统的最优套期保值比率估计方法在早期占据了很重要的地位。传统方法对最小方差套期保值比率的估计,可通过OLS进行。 
  2.时间序列模型和VAR模型 
  随着时间序列计量经济学的发展,很多学者开始批评运用OLS计算最小风险套期保值比率的缺点。Herbst、Kate、Marshall(1993)[3]和Myers、Thompson(1989)[4]发现利用OLS进行最小风险套期保值比率的计算会受到残差项序列相关的影响,同时解释变量与被解释变量的协方差以及解释变量的方差也应该是考虑时变信息的条件统计量。为了消除残差项的序列相关及增加模型的信息量,有学者提出利用双变量向量自回归模型(VAR)估计套期保值比率。 
  3.误差修正模型与协整理论 
  Granger(1986)[5]最早提出了误差修正模型。学者们还发现,现货与期货价格是协整的,Wahab、Lashgari(1993)[6]和Tse(1995)[7]发现期货价格和现货价格之间的协整关系对于最小风险套期保值比率的计算有很重要的影响。多元GARCH系列模型:随着80年代以后自回归条件异方差模型(ARCH)的发展和广泛应用,学者们开始从动态的角度研究最优套期保值率问题。由于大量实证研究发现资产回报时间序列表现为波动的集聚性(Clustering),学者开始用ARCH/GARCH刻画“期货—现货”的价格分布,捕捉其时变的方差和协方差特征。Engle和Kroner(1995)[8]提出了一种多变量广义ARCH过程,即多元GARCH测算动态套期保值率的方法。讨论了各种条件协方差矩阵推广下的等价关系,并给出了联立方程组中协方差的必要和充分条件。 
  Granger提出了误差修正模型十年后,Lien(1996)[9]根据Granger.Engle的协整理论,提出了估计最小风险套期保值比率的误差修正模型ECM(Error Correction Mode1)。这一模型同时考虑了现货价格和期货价格的不平稳性、长期均衡关系以及短期动态关系。Lien指出在许多实证研究,现货和期货的价格被证明均包含一个随机的趋势。因此,有必要检查的有效市场假说。这篇期货市场的著作体现了结合协整模型在现货和期货定价模型中的重要性。当统计模型中疏漏了协整的变量时,套期比率和套期保值的效果可能急剧变化。Lien的文章表明:虽然GARCH模型可能描述价格行为,在比较各种对冲策略的事后性能时,协整模型是唯一真正的不可缺少的组成部分。通过实证分析,Ghosh(1993年)[10]计算发现,当协整模型完全被忽略时可以拟合出一个较小的最优期货头寸。他把模型产生的这种估计错误归咎于条件误设。这份文献记录为确认上述猜想与进一步探索协整关系在期货套期保值比率研究的影响提供了理论分析。 
  4.门限协整模型: 
  Balke和Fomdy(1997)[11]提出门限协整模型,是一个含有长期均衡不连续的调整的模型。但该模型遵循一个阈值自回归均衡,是给定的范围外的均值回归并有一个范围内的单位根。他们建议用“两步走”的策略来检验协整方法阈值,并发现当协整方法的阈值都出现的时候,标准时间序列法对测试线性情况相当不错。之后又考虑了两步法下阈值模型的替代假说——“sup-Wald”线性试验。 
  几年后,一部分实证结果发现这些改进后的门限协整模型模型确实能改善套期保值效果(Broll等,2000)[12]。Broll等人通过实证分析得出了一些非线性的即期和远期汇率的关系并拓展了一个出口贸易公司用来检测相关的经济影响力的期望效用模型。该模型表明:在公正货币期货市场,如果即期和远期汇率的关系是凸(凹)性的而不是线性的,这家公司应该出口更多(或更少)并进行更多(更少)对冲。当货币期权期货价格是公平可得的,公司必须结合货币期货利用它们的,以更好地规避其非线性汇率风险。这就为不确定性是非线性的期权套期保值提供了一个理论基础。 
  5.ARFIMA模型 
  而Balke和Fomdy(1997)提出门限协整模型两年后,在ECM模型的基础上,为更精确地捕捉序列特征,Lien和Tse(1999)[13]提出了分数协整自回归移动平均模型(ARFIMA),并探讨了各种不同的计量经济模型估计的套期保值比率性能:FIEC模型作为估计的套期保值比率的新模式分析确定了普遍的分数协整关系。因为需要对各种模型不同的对冲期限的性能分析,他们调查了采用这种分数协整关系进行期货对冲的影响,调查结果包括:1.有条件的异方差法可以提高避险绩效。2.因为EC模型在返回风险方面提供更好的后期样品来规避风险,由EC模型得到的套期保值比率持续高于FIEC模型得到的套期保值比率。3.EC模型结合有条件的异方差法是估计套期保值比率的主要策略。4.加入分数协整关系分析的EC模型并不会提高避险绩效。5.对于传统的回归分析方法得出的5天或以上的对冲期限下的结果,其效果是最差的。 
  6.GARCH模型 
  此后,多数实证研究(例如Haigh and Holt(2000)[14]Yeh and Gannon(2000)[15])认为,多元GARCH方法套期保值效果显著优于传统的OLS套期保值技术。Yeh and Gannon在有交易成本的情况下,将持续动态对冲模型与在悉尼期货交易所进行交易的股指期货合约进行比较分析。该研究中通过含有条件对冲比率的动态GARCH误差模型建立的一个动态二元二次模型,并用该动态二元二次模型建立收益方程,从而拟合出最优套期保值比率。当组合预测是基于他们的利润情况(或净交易成本),GARCH对冲模型则能反映出利润最高的投资策略。
 此后大量研究都集中于使用GARCH模型框架估计时变的套期保值组合。 
  GARCH模型族已经成为金融风险管理中确定最优套期保值比率(OHR)的重要工具之一。 
 自从Engle(1982)[16]提出ARCH模型,Bollerslev(1986)[17]将其推广为GARCH模型开始,对GARCH模型的改进就没有中断过。总的来说,20世纪80年代中后期到90年代中前期在套期保值领域中GARCH模型的改进主要集中在如何更好拟合金融时间序列的特征,如非对称性和协整关系等问题上;20世纪末到现在,主要集中在如何估计更准确的、时变、非对称、非线性的协方差等问题上。 
  二、国内主要成就 
  对于我国近几年对股指期货套期保值比率的研究,中国近几年在这一领域也取得了巨大的进展。 
  2006年9月8日,中国金融衍生品交易所成立,并在2006年10月30日开始了沪深300股指期货的仿真交易。2010年4月16日我国股指期货正式上市交易。 
  随着我国股指期货的设立,股指期货套期保值比率的研究开始大量涌现,研究方法也在逐步创新,逐步完善。在借鉴国外大量的研究工作中,我国的金融科研人员尝试用各种静态模型和动态模型对股指期货套期保值比率进行经验实证分析。从OLS、B-VAR及VECM等静态模型到GARCH模型和MRS动态模型,我国在这一领域中的研究已取得了不少成果,不仅有专门针对模型的应用,还有将各种模型的研究效果进行比较分析。 
  1.基于仿真交易数据的研究 
  在沪深300股指期货正式推出前,利用仿真交易,2007年中国科学技术大学统计与金融系、中科院数学与系统科学院联合对股指期货的套期保值比率进行了研究[18]。该研究中运用了OLS、VAR、ECM、diagonal-BEKK、full-BEKK、scalar-BEKK等模型,对沪深300股指期货仿真交易的套期保值比率进行研究,比较了静态套期模型和动态套期保值模型的效果,并研究不同参数化形式对动态套期保值模型的影响。结果表明尽管动态套期保值在样本内要优于静态套期保值模型,但样本外效果却不是很好。另外,动态模型的不同的参数化形式对结果的影响也比较大。 
  此后,许多专家学者先后利用中金所推出的股指期货仿真交易数据进行了有关研究。 
  北京工商大学经济学院的胡向科[19]在研究不同估值模型最优套期保值比率的绩效时,针对OLS、双变量自回归模型(B-VAR)、误差修正模型(ECM)以及ECM-GARCH模型4种方法利用Eviews6.0对最优套期保值比率进行统计分析。结果显示,ECM-GARCH模型不合适,前3个模型中误差修正模型得到的套期保值比率最好。选取的股指期货数据是来自于中金所推出的股指期货仿真交易数据,选择的样本时间段从2008年10月16日到2009年10月16日。在利用沪深300指数期货进行套期保值时,可以选择不同的现货进行套期保值,该研究选择的是上证50ETF基金,因为它有很强的市场代表性。 
  2.股指期货正式推出后基于真实数据的研究 
  股指期货正式推出之前的这些研究有数据上的局限性,因为这些研究都是在股指期货正式推出前进行的。在2010年4月16日我国股指期货正式上市交易后,我国金融衍生品学界又迎来了一轮新的基于真实股指期货数据的实证分析热潮。同时,虽然国外关于双变量GARCH模型的套期保值策略研究较多,国内对双变量模型的套期保值策略涉及较少而双变量模型是一种动态地将股票现货市场信息与股票期货市场信息全部利用的模型,在信息利用上面的优势是单变量模型所无法比拟的。因此,基于双变量GARCH模型的时变套期保值策略有重要的研究价值。 
  2010年,西北大学经济管理学院的赵婉淞、孙万贵和西安财经学院商学院的赵广信一起研究了股指期货套期保值策略在股票型开放式基金风险管理中的应用[20]。他们以沪深300指数中的IF0912合约为例,将双变量GARCH模型引入股票型开放式基金的风险管理中,实证研究股指期货套期保值策略在股票型开放式基金风险管理中的应用。研究结果表明:最小方差套期保值策略与时变套期保值策略虽然并不能完全消除风险,但相比未套期保值策略来说,采取套期保值策略可以降低股票型开放式基金的VAR(在险价值),其中基于双变量GARCH模型的时变套期保值策略的保值效果最佳。 
  综上,国际上研究模型经历了OLS模型、向量自回归模型(VAR)、误差修正模型、ARCH模型、GARCH模型、误差修正模型(ECM)、门限协整模型、ARFIMA模型等的提出及演变过程。中国在这一领域探索的进展也在近几年取得了巨大的进步。从OLS、B-VAR及VECM等静态模型到GARCH模型和MRS动态模型,从利用仿真数据研究到股指期货正式推出后基于真实股指期货数据的研究,我国在这一领域中的研究已取得了不少成果,不仅有专门针对模型的应用,还有将各种模型的研究效果进行比较分析。 
   
  评论这张
 
阅读(15)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017